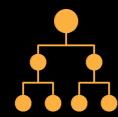


No Sun, no Life...

BROKER 101


RA-ESG.COM
RA-ESG PLC
London, England

A SHORT BROKER'S GUIDE TO RA-ESG

It's a big decision choosing a new investment product for your portfolio, and we certainly realise that it's not always just the "commission" that forges strong relationships, but other factors such as:

Company Credibility

The Market Sector

The Business Model

The Exit Strategy

Investor Security

Profit Sustainability

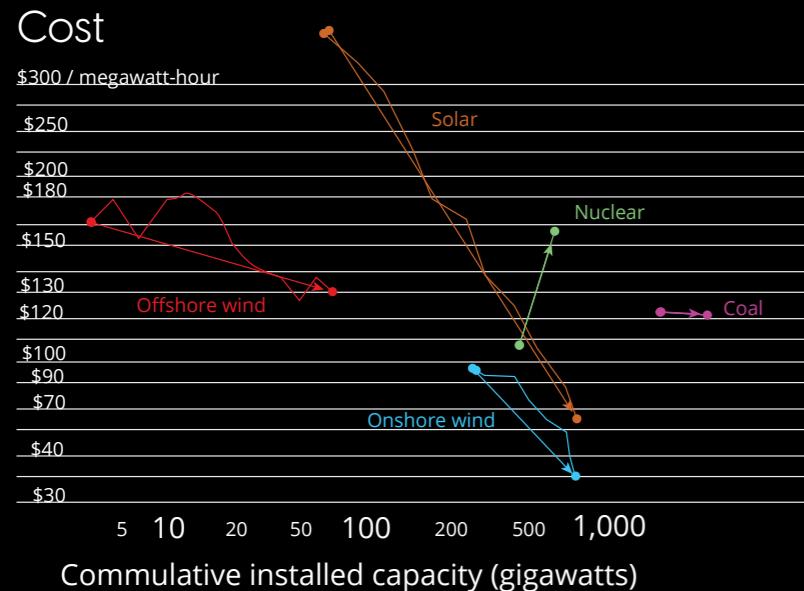
ESG INVESTMENT

ESG is the acronym for Environmental, Social and Governance, and represents a set of standards and criteria used by social and environmentally-conscious investors when considering potential investment opportunities.

In basic terms: we see the "Social" and "Governance" groups as very much "people-focused" as in the majority of cases they deal with stakeholders, employers, and socially conscious issues such as diversity, inclusion, gender, racism, social and corporate morals and ethics. As much as we applaud and support such efforts it's not what we excel at.

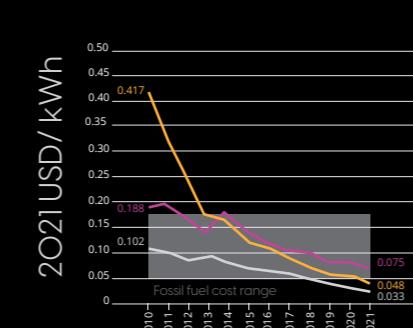
The "Environmental" aspect, and especially the generation of clean sustainable energy is our core competence. We firmly believe that our planet's ability to generate sustainable, clean energy as an alternative to fossil fuels is possibly the most important challenge facing the human race; as with free energy comes clean drinking water and abundant food.

Most investment brokers today should be offering at least 3 to 4 ESG / CSR investment opportunities.


ESG is the acronym for Environmental, Social and Governance, and represents a set of standards and criteria used by social and environmentally-conscious investors when considering potential investment opportunities.

WHY SOLAR ENERGY?

Trend of cost in Energy


The trends in cost of energy generation are measured in terms of USD per kWh, and are even more encouraging for Solar:

Source: IRENA 2020

"The global weighted average levelized cost of electricity (LCOE) of newly commissioned utility-scale solar PV projects declined by 88% between 2010 and 2021"

IRENA 2022 Renewable Power Generation Report.

To illustrate the cost savings in solar energy generation in comparison to fossil fuels, the graph below shows the cost of producing 1 kWh:

IRENA 2022 Renewable Power Generation Report.

Sustainable Investment Gap

Two-thirds lack consistently reliable and accessible ESG data.

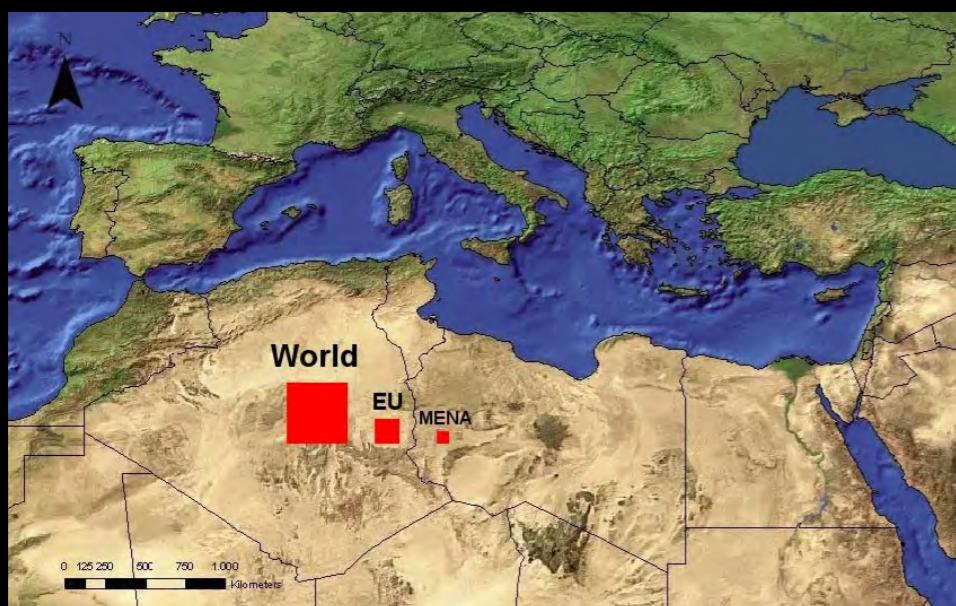
ESG is fully integrated into every investment decision:

35%

ESG is integrated when data is available:

33%

ESG is integrated on an ad-hoc basis:

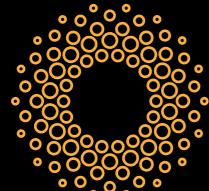

16%

DOES IT WORK?

The large red square above represents the amount of solar panels required to power the entire world, the next one the EU (including the UK), and the next, Middle East and Northern Africa ("MENA"). The current estimations are that if less than 1.5% of the Sahara was covered in Solar panels, we could power the planet. Naturally, there are challenges, political instability, national security, war, and raising the investment required in the first place (although we seem to be able to pile trillions into the war and military sector).

On the following page we break down a typical RA-ESG type investment, how it progresses, and the return on investment ("ROI") it produces.

WHY NOW?


Even forgetting the climate crisis, carbon emissions, electric vehicle legislation and the new ESG/CSR corporate audit responsibilities; the sun still remains the most abundant form of free energy on earth.

If there were no other criteria to consider apart from that of generating the cheapest, storable, transportable energy on earth....Solar Power still wins hands down.

Taking a look at the first graph on the previous page, it shows a massive decrease in the cost of solar energy, but what the graph doesn't show is the recent hikes in the cost of uranium (nuclear power), the lack of gas from Russia, and the sudden realisation that the large wind-turbines we all see on and offshore are disintegrating and catching fire too (plus the environmental catastrophe of disposing of the turbines and blades too).

Of course, the recent legislation forcing manufacturers to transition to electric vehicles is great news too, but it comes with a serious caveat; it is all very well not putting petrol or diesel in your tank, but not much point if you're plugging in at home (or work) and using fossil fuel generated energy to charge your car! The only thing you're changing is "where" you use the fossil fuel, not if!

To abandon fossil fuels completely, solar farms are required as part of the energy infrastructure.

A Point To Ponder Whilst Perusing Our Business Model;

"The unpopulated area of the Sahara desert is over 9 million square kilometres, which if covered with solar panels would generate 630 Terrawatts of electricity, our entire planet only uses 15 Terrawatts. Yet, 600 million people in Africa alone do not have access to Electricity"

WHY RA-ESG ?

The number one reason is “access”: Virtually every oil, large construction and engineering company are in the process of ring-fencing the market. They understand that non-arable land that has previously been considered useless and of little value from a development point of view, is now extremely valuable in terms of the energy it can produce from the sun.

But do we all want to remain reliant and handcuffed to these large corporations? Should we be forever held ransom to pay highly inflated energy tariffs? Or, do communities (and businesses) with large tracts of surplus land simply generate their own energy for free? On the following pages we look at the financial logic.

FINANCIAL LOGIC

Firstly type into Google “What does it cost to generate a kWh of Electricity in [insert your country here].

As an example, we’ll use [The UK Energy Guide website](#) which tells us that “The actual cost of electricity is £00.52p per kWh”. Due to subsidies and price caps, there currently exists a difference between what it COSTS to generate electricity and what is charged to consumers.

Let’s take an imaginary energy requirement, a medium-sized business. In this type of building the average electricity usage will be about 70,000 kWh of energy per annum (combined gas and electricity, assuming gas is used for heating).

If you only had to pay £00.30p per kWh that would equate to £21,000 per annum.

Now lets look at replacing the entire energy requirement with Solar.

For 70,000 kWh per annum, and to cover 100% of the energy bill, assuming 4.5 hours of sunshine per day, you would need a 58 kW solar array. This would cost approximately £60,000 (not including batteries).

That equates to THREE YEARS of the existing electricity bill, which is going to go up every year anyway.

Let’s add some batteries, and some interest on a loan to buy and fit everything in the first place. Even taking a figure of £100,000 expenditure over a 5-year period, that equates to £20,000 per annum... less than the current electricity bill!

Now look at the situation AFTER the 5-year loan... totally free electricity for the next 25 years (apart from a few small maintenance, cleaning a part replacement issues).

The above scenario works no matter whether the project is a small house or a large industrial complex.

The above scenario applies no matter whether the project is a small house or a large industrial complex.

Registered Office

71-75 Shelton Street
Covent Garden
London WC2H 9JQ

⊕ ra-esg.com

✉ info@ra-esg.com

📞 +44 208 004 5055